كيف نقيس سرعة الضوء؟

لاشك أن تلك مشكلة كبيرة بالنسبة لإدراكنا البديهي. إن سرعة الضوء هي تقريبًا 300 ألف كم/ثانية، كيف يمكن لنا أن نقيس شيئا بهذه السرعة المهولة، والتي يمكن لك أن تدور بها حول الأرض سبع لفات ونصف في ثانية واحدة؟، ما بالك أن تعرف أن أوائل تلك المحاولات الناجحة لقياسه كانت بعصر لم تكن فيه أي من تلك التقنيات الليزرية النانوية موجودة، لم تكن الكهرباء نفسها موجودة، أليس ذلك غريبا؟



حاول “جاليليو جاليلي” في أوائل القرن السابع عشر أن يحدد سرعة الضوء، فأرسل بشخصين يحمل كل منهما مصباحا على مسافة ميل من بعضهما البعض، ثم بعدها يعطي أحدهما للآخر إشارة بالمصباح، وعلى الثاني بمجرد رؤيتها أن يرد بإشارة أخرى، وهكذا بانتظام، ثم قام “جاليليو” بحساب الزمن المنقضي بين إطلاق أحدهما الإشارة واستجابة الآخر، واضعا في الاعتبار معامل الخطأ البشري؛ ليرى أن الفارق ثمة كان واضحا؛ وهو الفارق الذي أخذه الضوء ليقطع مسافة ميل كامل، لكن التجربة بالتأكيد باءت بالفشل.

فالضوء يقطع تلك المسافة في جزء من مئة ألف جزء من الثانية وهو أمر لا يمكن ملاحظته بالعين المجردة، هنا سجل “جاليليو” أن سرعة الضوء أكبر من أن تقاس بتجربة كتلك، ربما هي أكبر بـ10 مرات من سرعة الصوت، لم تمر أربعون عاما أخرى حتى جاء “أولي رومر” بتجربة غاية في الذكاء.



بين تلسكوبي رومر وبرادلي

في القرن السابع عشر كانت إحدى المشكلات تتمثل في تحديد توقيت مناسب يمكن لكل البحارة أن يتفقوا عليه حتى تنتظم رحلاتهم معا، لم تكن هناك ساعات أو أي أدوات تمكنهم -في البحر- من قياس الوقت، هنا تدخل “أوول رومر” الفلكي الدنماركي ليبني على توقعات “جاليليو” القائل إنه يمكن لنا استخدام خسوف أقمار المشتري المنتظم بدقة في قياس الزمن، وكانت تلك فترة يمكن للبحارة أثناءها استخدام التلسكوبات الصغيرة، وتحديد لحظة دخول أحد أقمار المشتري -آيو IO مثلا- في منطقة الخسوف بدقة، لكن ظهرت مشكلة.


لاحظ رومر أن مواعيد خسوف قمر المشتري تتغير عن الموعد المحسوب لها بتغير بُعد الأرض عن المشتري أثناء دورانهما حول الشمس؛ بحيث يتحدد الفارق في المدة من خلال مسافتهما من بعضهما؛ تلك المسافة التي تكبر عندما تكون الأرض أبعد ما يمكن عن المشتري، وتصغر عندما تكون الأرض أقرب ما يمكن من المشتري، وحين تكون الأرض في الوسط؛ يصبح الفارق وسطاً بين الحسابين، بذلك يصعب على البحارة استخدام تلك الفكرة لتحديد نظام التوقيت الخاص بهم، فأهملها الجميع، لكن “رومر” استمر في الرصد.

توصل “رومر” هنا إلى فكرة بسيطة تقول إنه: ربما المشكلة ليست في حركة القمر “آيو” أو في ظل المشتري، لكن المشكلة أن للضوء سرعة محددة، وبذلك يحتاج وقتا أطول للوصول للأرض حينما تكون بعيدة عن المشتري، قام “رومر” بعمل معادلاته لكنه ارتكب خطأ في حساب التغير في الموعد، فسجل سرعة الضوء على أنها 200 ألف كيلومتر في الثانية، إنه فارق ضخم بالفعل لكن طريقة “رومر” نفسها دقيقة للغاية ومع حسابات مضبوطة يكون الناتج دقيقا، في كل الأحوال نحن على بعد 50 عاما من تجربة أكثر دقة.



التزيّح Parallax هو تغير ظاهري في موقع الشيء الذي نرصده بسبب تغير موقعنا نحن، كأن تلاحظ أن الشمس أثناء الغروب توجد تماما فوق مئذنة البلدة، ثم تتحرك بسيارتك للأمام مسافة ما، وتنظر للشمس فتجدها الآن فوق منزل أحد الأصدقاء. حينما تدور الأرض حول الشمس يكون قطر مدارها حوالي 300 مليون كيلومتر، مما يتسبب في انحراف لمواقع النجوم التي نرصدها بالنسبة لنقطة ثابته، فإذا رصدنا نجما خلال الصيف ثم عدنا ورصدناه خلال الشتاء سوف نجد أن موقعه قد تغير أو “تزيح”، كلما كان النجم قريبا كان التزيح واضحا.

سنة 1728 بينما كان جيمس برادلي، الفيزيائي البريطاني، يحاول قياس تزيّح النجم “جاما التنين” من كوكبة التنين اكتشف وجود مشكلة غريبة في القياسات، فقد تحرك النجم في السماء خلال الرصد في شكل بيضاوي كبير بقطر 41 ثانية قوسية؛ بل إن قياسات لمجموعات أخرى من النجوم تسببت في نفس النتائج، الجميع يتحرك بنفس الشكل، ولم يكن من الممكن أن تكون النجوم بهذا القرب أو أن تكون كلها بجانب بعضها.

يشبه الأمر أن تقف تحت المطر، سوف توجه المظلة للأعلى تماما، أما إذا كنت تجري فسوف يبدو المطر مائلا وسوف توجه المظلة للأمام حسب سرعتك، هنا يمكن حساب ميل المظلة وقياس سرعة المطر بالنسبة لسرعتك

ظل “برادلي” في حيرة من أمره حتى اكتشف أثناء رحلة في نهر التايمز بجنوب إنجلترا أن المشكلة ربما لا علاقة لها بموضوع التزيح، لكن المشكلة لها علاقة بسرعة دوران الأرض فقط؛ وليست المسافة التي قطعتها، لنفهم ذلك دعنا نتخيل أن هناك قطارا متوقفا تحت المطر، حينما تنظر من النافذة سوف تجد أن المطر يسقط بشكل رأسي تماما، أما إذا تحرك القطار فسوف ترى من النافذة المطر كأنما يسقط مائلا، وكلما ازدادت سرعة القطار كلما ازداد الميل الظاهري للمطر، ذلك -إذن- هو ما يحدث حينما نحاول رصد النجوم، فإن الضوء الساقط منها بشكل رأسي على الأرض لا يظهر رأسيا؛ لأن الأرض تتحرك، هنا تمكن “برادلي” من خلال استخدام حساب المثلثات في قياس زاوية ميل شعاع الضوء القادم من النجم أن يعطي تقديرا يقترب كثيرا من الدقة لسرعة الضوء، 301 ألف كيلومتر في الثانية!

لنعد إلى كوكب الأرض
حسنا، لنعد إلى الأرض، لقد كانت طريقة “جاليليو” صحيحة؛ لكن المسافة بين الشخصين كانت ضعيفة للغاية، لذلك مكنتنا المسافات الكبيرة بين الأرض والمشتري أو النجوم في عمق الخلفية السماوية من قياس سرعة الضوء بطريقة أسهل، لكن بحلول القرن التاسع عشر أعطتنا المحركات فرصة مختلفة لقياس سرعة الضوء، بدأت من عند “أرماند فيزو” الفيزيائي الفرنسي.

كانت فكرة فيزو بسيطة، مصدر للضوء يطلق شعاعا ضوئيا تجاه مرآة على بعد ثمانية كيلومترات ليضرب مرآة وينعكس مرة أخرى للمصدر، لكن في طريق شعاع الضوء سوف نضع عجلة ذات تروس تدور بواسطة موتور قوي، هنا -في أثناء عودته- قد يمر الضوء بين فتحات التروس وقد يصطدم بالجزء الصلب منها وبذلك لن يعود مرة أخرى للمصدر، هنا يقوم “فيزو” بضبط سرعة الموتور؛ بحيث يمر الشعاع الضوئي بين أحد التروس للمرآة ثم في طريقه للعودة يمر بالفتحة التي تليها، هنا يمكن قياس المسافة بين الفتحتين، وسرعة اللف، وبذلك نتمكن من قياس سرعة الضوء، وحسبها “فيزو” بقيمة 313 كم/ث بفارق 4% تقريبا عن النتيجة الدقيقة.

كان الإنسان في الماضي يعتبر أن الضوء ينتقل لحظياً بسبب سرعته العظيمة. ثم أوضح أوول رومر عام 1676 أن للضوء سرعة محدودة بدراسة الحركة الظاهرية لقمر المشتري أيو. في عام 1865 اقترح ماكسويل بأن الضوء هو موجة كهرومغناطيسية، وبالتالي ظهرت السرعة c في نظريته للكهرومغناطيسية. عام 1905 افترض ألبرت أينشتاين استقلال سرعة الضوء عن حركة المصدر لأي اطار عطالي وأثبت ثباتها، واكتشف كل العواقب المتعلقة باشتقاقه نظرية النسبية الخاصة وأوضح أن c هي ثابت طبيعي ولا تنحصر فقط في سياق الضوء والظواهر الكهرومغناطيسية. بعد قرون من القياسات المتزايدة الدقة عرفت سرعة الضوء عام 1975 بكونها تساوي 299,792,458 م/ث مع ريبة في القياس تساوي 4 أجزاء بالبليون. عام 1983 تم اعادة تعريف المتر في نظام الوحدات الدولي بأنه المسافة التي يقطعها الضوء في الفراغ خلال 1/299792458 ثانية. وبالتالي قيمة c العددية بوحدة م/ث هي الآن قيمة ثابتة بالضبط نسبة إلى تعريف المتر.

وبطريقة مشابهة، أجرى الفيزيائي الأمريكي ألبرت مايكلسون سنة 1920 تعديلات غاية في الدقة والأهمية على تجربة فيزو، فأضاف -بدلا من عجلة ذات الأسنان- مرآة ثمانية الأوجه تدور بسرعات مختلفة، على مسافة 35 كم، لتعكس شعاع الضوء من مصدر إلى مستقبل في الجهة المقابلة، وبحساب سرعة دوران المرآة استطاع فريق “مايكلسون” قياس سرعة الضوء بفارق طفيف عن القيمة المعروفة لها، فلقد توقع أنها 299,796 مضافا إليها أو مطروحا 4 كيلومترات.

سرعة الضوء في المنزل
أما الصورة الحديثة عن سرعة الضوء فلقد تطورت بسبب الحرب العالمية الثانية مع حاجتنا لقياسات دقيقة تحدد سرعة الضوء كي نستطيع ضبط راداراتنا، وإرسال الشفرات إلى الطائرات والغواصات في أعماق الأطلنطي، كان مركز تلك القياسات هو تجربة الفيزيائي البريطاني لويز أيسن5 حينما صنع موجة راكدة عبر تمرير موجتي ميكروويف لهُما نفس التردد والسعة، لكنهما متضادتان في الاتجاه، بداخل مساحة محددة 8 ميكرون، وتمكنت تلك التجربة من تحديد قراءة دقيقة لسرعة الضوء بلغت 299,792.5 كم/ساعة، لكي تفهم طريقة “أيسن” بشكل أفضل يمكن لك تنفيذ نفس التجربة في المنزل.

كل ما تحتاجه هو جهاز ميكروويف، أزل منه الطبق الدوار، وضع بطول الميكروويف قطعة شيكولاتة طويلة، ثم أدر الجهاز لمدة دقيقة واحدة، ما سوف يحدث هو أن موجات الميكروويف هي موجات راكدة، تهتز فقط لأعلى ولأسفل في نفس المكان، في منطقة العقد بين الاهتزازات تكون طاقة الموجة أقل ما يكون، بينما تكون أعلى ما يكون في مناطق الموجات؛ لذلك حينما تخرج قطعة الشيكولاتة سوف تجد على سطحها مجموعة من النقاط التي انصهرت، والنقاط الأخرى التي لم تبدأ في الانصهار بعد.

الآن قم بحساب المسافة بين نقطتين منصهرتين على سطح قطعة الشيكولاتة، تلك هي نصف طول الموجة، يمكن بعملية حسابية بسيطة أن تضرب تلك القيمة في 2 للحصول على طول موجة كاملة، ثم بعد ذلك قم بضرب تلك القيمة في تردد الجهاز خاصتك -مدون في خلفية كل جهاز- وسوف تحصل على سرعة الضوء بشكل دقيق جدا، في المنزل!

ربما بعد تلك التجربة الأخيرة سوف يتضح لك الهدف الضمني لهذا المقال، للوهلة الأولى يبدو موضوع قياس سرعة الضوء أمرا غاية في الصعوبة، ويحتاج لمسافات ضخمة للغاية، لكن العلم يلعب دائما بطرق غير مباشرة، يدفعنا المنهج العلمي لابتكار طرق مختلفة تتحايل على ما يبدو مستحيلا فتنحي جزء الاستحالة جانبا، وتقتبس بعض الضوء من الممكن، في تجربة “فيزو” مثلا أبدلنا سرعة الضوء بسرعة دوران أسنان العجلة، وفي تجربة أيسن اعتمدنا قياس طول موجة راكدة واحدة، وها نحن نقيسها عبر قطعة شيكولاتة في المنزل، فقط لأن هناك قانونا ما يساعدنا على تحويل أشياء صعبة، لأخرى أسهل كثيرا، بمذاق رائع أيضا!

سرعة كل الجسيمات عديمة الكتلة والحقول المصاحبة

سرعة الضوء في الفراغ هي ثابت فيزيائي هام في العديد من مجالات الفيزياء، يرمز له في العادة بالرمز c وتساوي قيمته 299,792,458 متر لكل ثانية. تستخدم سرعة الضوء حاليا لتعريف وحدة المتر باعتبارها ثابتا فيزيائيا ومعيارا دوليا لقياس الوقت. وهو ما يعادل بعد التقريب لثلاثة أرقام معنوية 300,000 كيلومتر في الثانية أو حوالي مليار كيلومتر لكل ساعة.

يستغرق ضوء الشمس حوالي 8 دقائق و17 ثانية لقطع المسافة المتوسطة من سطح الشمس إلى الأرض.
سرعة حزمة ليزر في الهواء وتبلغ 99.97% منها في الفراغ

بموجب النسبية الخاصة، سرعة الضوء (أو الثابت c) هي أقصى سرعة تستطيع أن تسافر بها كل أشكال الطاقة،أو المادة، أو المعلومات في الفضاء. وهي سرعة سفر الجسيمات عديمة الكتلة ومجالاتها المتلازمة (بما في ذلك الإشعاع الكهرومغناطيسي مثل الضوء) عبر الفراغ. وهي أيضا سرعة الجاذبية (الخاصة بأمواج الجاذبية) التي تنبأت بها النظريات الحالية. وتسافر تلك الجسيمات والأمواج بالسرعة c أيا كانت سرعة المصدر والإطار المرجعي العطالي للمراقب. في نظرية النسبية، الثابت c يرابط بين المكان والزمان، ويظهر أيضا في المعادلة الشهيرة لتكافؤ المادة والطاقة E = mc2

ينتشر الضوء في المواد الشفافة مثل الزجاج والهواء بسرعة أقل من c. تدعى النسبة بين c وبين سرعة الضوء في مادة ما v بقرينة الانكسار n لتلك المادة (n=c/v). مثال، تساوي عادة قرينة انكسار الضوء المرئي عند مروره عبر الزجاج حوالي 1.5، معنى ذلك أن الضوء يسير في الزجاج بسرعة v = c/1.5 ≈ 200,000 km/s، وللهواء تساوي قرينة الانكسار 1.0003، وبالتالي تقل سرعة الضوء المرئي في الهواء بحوالي 90 كم/ث عن c.

يظهر انتشار الضوء وغيره من الموجات الكهرومغناطيسية في كثير من الأصداء العملية بشكل آني (أو لحظي)، ولكن للمسافات الطويلة والقياسات الحساسة جدا، فإن السرعات المحدودة لتلك الموجات تكون لها تأثيرات ملحوظة. الاتصال بمسابير الفضاء البعيدة، على سبيل المثال، يمكن أن يستغرق دقائق لساعات وذلك لإيصال رسالة من الأرض إلى المركبة الفضائية، أو العكس. كما أن الضوء الذي يصلنا من النجوم يكون قد رحل عنها منذ سنوات عديدة (آلاف السنين الضوئية)، فالذي يصلنا هو صورة تلك النجوم في زمن سحيق وهو ما يسمح بدراسة تاريخ الكون من خلال النظر في مكوناته البعيدة. كما أن سرعة الضوء المحدود تضع حداً للسرعة القصوى النظرية لأجهزة الحاسب الآلي، حيث تنتقل المعلومات داخل الحاسوب من رقاقة لأخرى. وبما أن سرعة الضوء ثابتة في الأوساط المختلفة يمكن استخدامها مع زمن الطيران لقياس مسافات كبيرة بدقة عالية.

من المعروف أنه لا يوجد شيء أسرع من الضوء ولكن في السنوات الماضية تم إجراء عدة تجارب لاكتشاف ما هو أسرع وقد وجدوا أن الإلكترونات المتجاورة تدور في اتجاهات مخالفة أى أن إلكترونى المستوى الأول أحدهما يدور في إتجاه عقارب الساعة والأخر في عكس إتجاه عقارب الساعة ولو تم عكس اتجاه أحدهما فيتم عكس التالي مباشرة وفي نفس اللحظة حتى إن كان أحدهما على كوكب الأرض والآخر خارج المجرة

سرعة الضوء وقياس المسافات
في معظم الحالات العملية، يمكن اعتبار أن الضوء يتحرك بشكل فوري حيث أن سرعته كبيرة جدا جدا، ولكن عند قياس المسافات الطويلة كقياس بُعد نجم عنا أو في تجارب قياس الزمن الدقيقة فلا بد من أخذ سرعة الضوء في الاعتبار. فمثلا عند الاتصال بمسبار على المريخ تستغرق الإشارة عشر دقائق ويأتينا إشارته خلال 10 دقائق أخرى (بحسب موقعة بالنسبة للأرض).

وقد ابتكر الفيزيائيون والفلكيون طريقة لتسهيل قراءة المسافات بيننا وبين النجوم بسبب بعدها الكبير عنا وهي طريقة قياس المسافات بالسنة الضوئية على أساس أن سرعة الضوء في الفراغ ثابتة دائما وتبلغ نحو 300.000 كيلومتر في الثانية. فيمكننا القول بأن الشمس تبعد عنا 150 مليون كيلومتر أو القول بأن المسافة بينهما تبلغ 8 دقائق. يستغرق الضوء عند خروجه من الشمس حتى يصلنا 8 دقائق.

الضوء الذي نراه من النجوم يكون قد غادرها منذ سنوات عديدة. أي أننا عندما نشاهد نجوما أبعد إلى أبعد فإننا نشاهدها على حالها في الماضي. أقرب المجرات إلينا مجرة المرأة المسلسلة (مجرة) وهي تبعد عنا نحو 2.5 مليون سنة ضوئية.

لا يوجد في الطبيعة سرعة أكبر من سرعة الضوء، هذا ما اكتشفته النظرية النسبية لأينشتاين التي صاغها في عام 1905.

وهذه السرعة أيضا تحدد السرعة النظرية لعمل الحواسيب ، حيث أن المعلومات تنتقل داخل الحاسوب كتيارات كهربية من رقاقة لأخرى. وتنتقل جميع الموجات الكهرومغناطيسية أيضا بسرعة الضوء، إذ أن الضوء نفسه عبارة عن موجات كهرومغناطيسية.

الإعلان